This presentation premiered at WaterSmart Innovations

watersmartinnovations.com

university of nevada, las vegas lune

Development of Improved Water Spray Patterns from Construction Water Trucks Water Smart Innovations Conference – October 2008

<image>

David E. James, Thomas C. Piechota, University of Nevada, Las Vegas UNLV Box 45-1099 Las Vegas NV 89154-1099 dave.james@unlv.edu Phone: 702-895-5804 Objectives of Project • Evaluate overall construction water use • Develop techniques to measure water sprays

Evaluate rear spray distribution, different types of equipment

Develop solutions to improve application uniformity of water

university of nevada, las vegas

Section 2 Valley Wide Water Use

Utility	Total	Total	Construction	Monthly ave	Period of
	delivered	construction	Percentage	construction	record
	(MG)	(MG)		(MG)	
City of Hend	65,994	1,948	3.0%	63	6/01-12/03
LVVWD	305,748	6,703	2.2%	210	1/01-8/03
City of NLV*	22,829	2,159	9.5%	127	1/02-9/03
Total	394,572	10,810	2.7%	400	

*NLV record shorter than others

 $400 \text{ MG/month} = 1200 \text{ AF/month} \times 12 \text{ mo/yr} = 14,400$ AF/yr (14,400 homes/yr – 40,000-50,000 people)

unlo

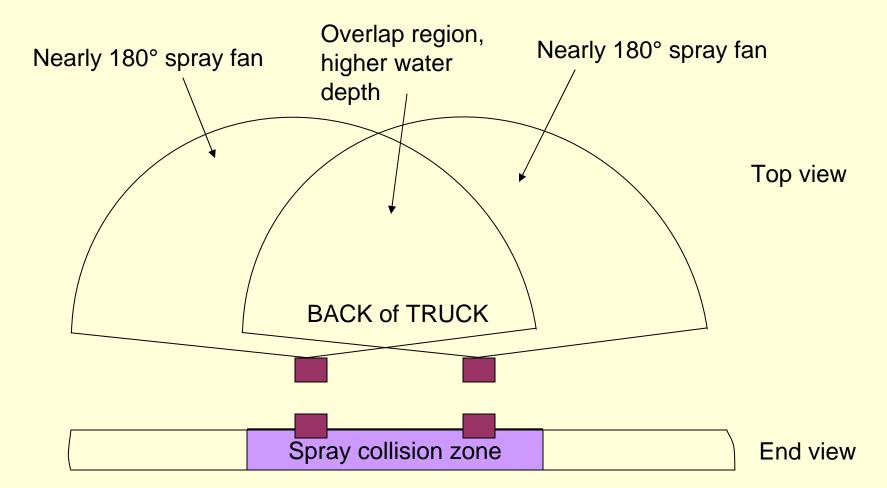
Fugitive Dust Control: BMP

- BMP (Best Management Practices, CCDAQM, 2003)

- Site-specific dust control measures

 Water application recommended for 17 activities including:

- Flaul roads


- Material staging or stockpiling

- Cut & fill activities
- Material transfer (loader & truck operations)
- Trenching, screening, etc.
- Blasting, demolition, etc.

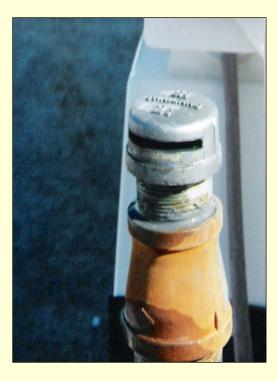
Water Truck Characterization

- Examination of truck systems
- Modeling of truck rear spray application
- Testing of truck rear spray patterns
- Development & testing of rear spray modifications

Standard Pattern – Overlap at Any Spray Rate

Types of rear nozzles tested

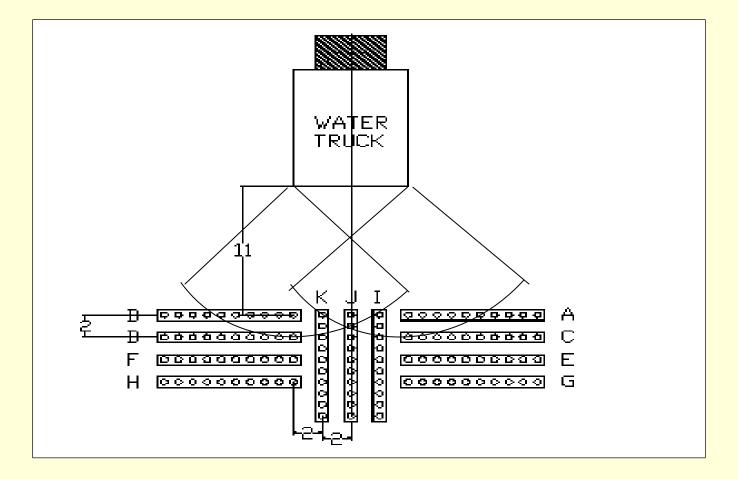
- Combined actuator-nozzle:
 - Valew
 - Megacorp
 - Bertolini



Simple Nozzles: Flat Fan Nozzles With Collar Without Collar

university of nevada, las vegas university

Typical Pipe Cap Installation



university of nevada, las vegas university

university of nevada, las vegas

Typical Trough Layout

Types of Equipment Tested

• Type

Number tested

5

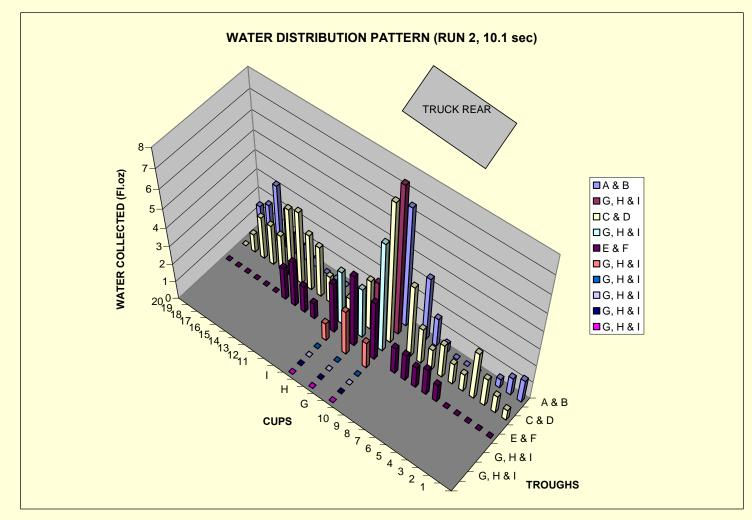
1

2

1

1

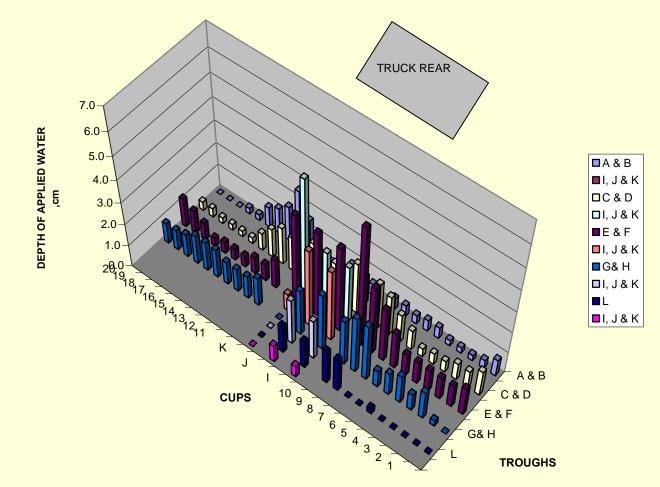
- 4,000-gallon water truck
- 2,000-gallon water truck
- 1,500-gallon water truck
- 10,000-gallon off-road truck (Caterpillar 773B)
- 5,000-gallon water pull (Caterpillar 613C)


university of nevada, las vegas fu

Test in Progress – End View

Nozzle used for test run # 1,2 & 3 2.5" pipe caps with 5.75 x¹/₈" slots; 180°

Paired Nozzle Result CU 0.12 4,000 Gallon



Frehner, Jan 22, 2004, ³/₄" x 6", 180°, Flat fan nozzle

university of nevada, las vegas

High CU = 0.34

APPLIED WATER DEPTH (RUN3, 10.93 sec)

LVVWD – 6/2/04, Flat fan nozzles, 1/4" wide, 180°

Results – Flat Fan Sprays

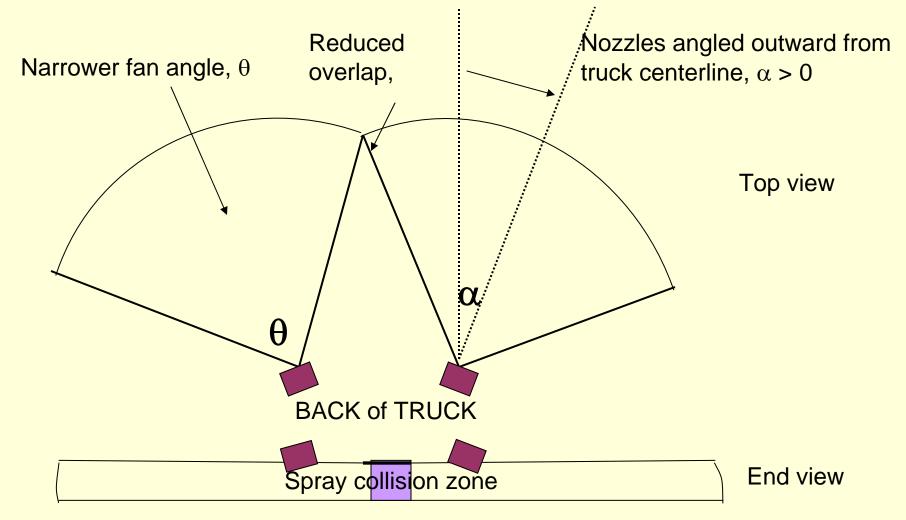
- 180° dual flat fan spray
- Significant center overlap between wheels
- Significant non-uniformities center/edge = 3X
- Typical fan width 35-40 feet
- Typical flow rate 350-450 gallons minute
- Average spray depth per pass @ 5 mph 0.04 0.08 inch
- <u>Uniformity coefficient range: -0.01 to 0.34</u>

university of nevada, las vegas univ

Summary – Simple, 180° Nozzles

Nozzle Type	Nozzle Fan Angle (θ) & Orientation Angle (α), degrees	Number of Runs	Application Rate, cm/sec, Mean +/- Std. Dev	Coefficient of Variation, Mean +/- Std. Dev	Coefficient of Uniformity, Mean +/- Std. Dev
Single Flat Fan	180 & 0	5	0.086 +/- 0.01	0.90 +/- 0.09	0.21 +/- 0.08
Single Flat Fan (off-road)	180 & 0	3	0.064 +/- 0.01	1.03 +/- 0.22	0.13 +/- 0.17
Dual Flat Fan	180 & 0	19	0.125 +/- 0.01	1.14 +/- 0.13	0.13 +/- 0.09
Dual Flat Fan (Trench Method)	180 & 0	4	_	0.90 +/- 0.24	<u>0.36 +/- 0.12</u>
Dual Flat Fan (off-road)	180 & 0	7	0.066 +/- 0.01	1.11 +/- 0.09	0.16 +/- 0.08
Dual Pipe caps 1/8" by 5.75"	180 & 0	3	0.038 +/- 0.00	1.06 +/- 0.11	0.24 +/- 0.08
Dual Pipe caps*, 3/8" by 5.75"	180 & 0	3	0.097 +/- 0.02	1.10 +/- 0.14	0.21 +/- 0.05

Summary – Combined Nozzle


Nozzle Type	Nozzle Fan Angle (θ) & Orientation Angle (α), degrees	Numb er of Runs	Application Rate, cm/sec, Mean +/- Std. Dev	Coefficient of Variation, Mean +/- Std. Dev	Coefficient of Uniformity, Mean +/- Std. Dev
Valew®	150 & 0	6	0.092 +/- 0.02	1.23 +/- 0.17	0.04 +/- 0.10
Mega Corp®	85 & 0	6	0.129 +/- 0.02	0.81 +/- 0.08	<u>0.37 +/- 0.06</u>
Bertolini® without Collar	152 & 0	2	0.115 +/- 0.01	1.08 +/- 0.06	0.24 +/- 0.03
Bertolini® with Collar	152 & 0	2	0.156 +/- 0.02	0.99 +/- 0.05	0.09 +/- 0.10
Bertolini® with* Collar	θ= 115-135, α= π/2-θ/2	5	0.115 +/- 0.05	0.92 +/- 0.12	0.29 +/- 0.13

*Values depend on orientation of nozzles. Minimum CU = 0.14 with gap in center. Max CU = 0.47 for some overlap in center

Why Are Spray Patterns Non-Uniform?

- Spray overlap
 - Individual nozzle fan angles 150-180° increases spray overlap in center
 - Paired nozzle orientations perpendicular to truck centerline, increases overlap
- Spray collision
 - Paired nozzles mounted at same height collision of sprays in overlap zone

Narrowed Nozzle Angle, θ , + Increase α , Reduces Overlap

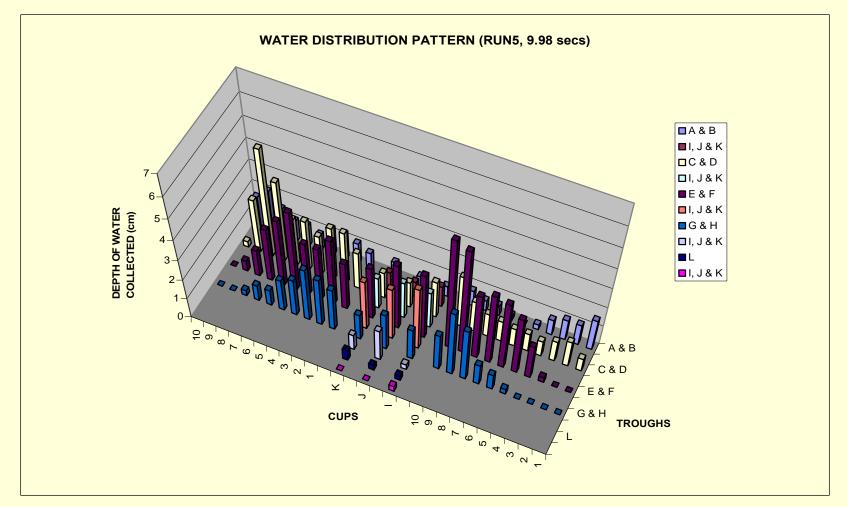
Potential Fixes

- 1) Decrease nozzle fan angles to 90-120°
- Angle paired nozzles outward from truck centerline – still want minimal overlap at standard engine speed, increase α
- Mount nozzles at different
 heights to avoid spray collision
 MegaCorp water pull uses #1) & #3)

university of nevada, las vegas

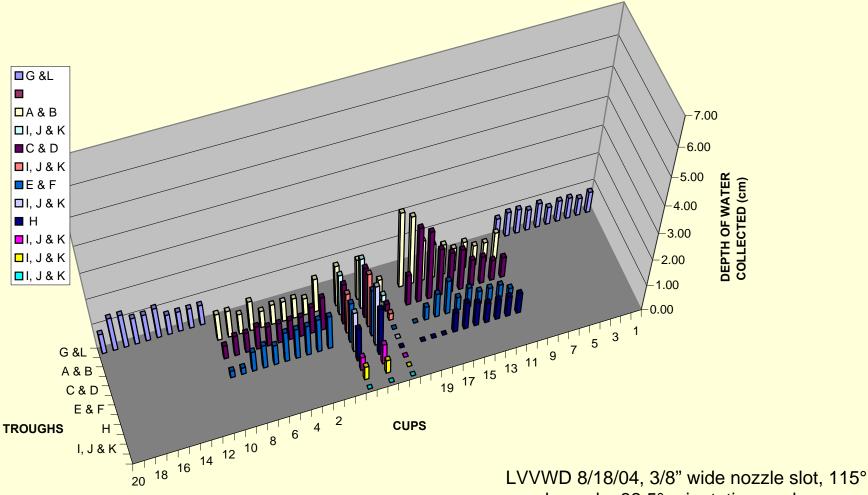
For Other "Standard" Nozzles

- Flat fan add a collar or ears to plate
- Pipe cap drilled holes
- Pipe cap slot cut to smaller circumference



university of nevada, las vegas

Modified Flat Fan Results, CU = 0.32



Nozzle details: Flat fan nozzle with side baffles, $5/8" \times 4"$, 120° (Right), 5/8" X 3", 90° (Left)

university of nevada, las vegas university

Bertolini Collar Plug – CU 0.55

WATER DISTRIBUTION PATTERN (RUN3,10.03ecs)

nozzle angle, 32.5° orientation angle

Summary: Improved Simple Nozzles

Nozzle Type	Nozzle Fan Angle (θ) & Orientation Angle (α), degrees	Number of Runs	Application Rate, cm/sec, Mean +/- Std. Dev	Coefficient of Variation, Mean +/- Std. Dev	Coefficient of Uniformity, Mean +/- Std. Dev
Dual Flat Fan with Ears	120(R), 90(L) & 0	Improved =2	0.144 +/- 0.01	0.91 +/- 0.16	0.28 +/- 0.06
	180 & 0	Original = 5	0.105 +/- 0.01	1.24 +/- 0.18	0.13 +/- 0.10
Dual Flat Fan with Ears and Slotted Collar	120(R), 90(L) & 0	Improved =2	0.155 +/- 0.01	0.87 +/- 0.08	0.36 +/- 0.06
	180 & 0	Original = 5	0.105 +/- 0.01	1.24 +/- 0.18	0.13 +/- 0.10
Dual Pipe caps, 1/4"	120 & 30	Improved =2	0.075 +/- 0.01	1.00 +/- 0.05	0.22 +/- 0.02
	180 & 0*	Original = 3	0.038 +/- 0.00	1.06 +/- 0.11	0.24 +/- 0.08
Dual Pipe caps, 3/8"	120 & 30	Improved =2	0.064 +/- 0.01	0.83 +/- 0.06	0.38 +/- 0.06
	180 & 0**	Original = 3	0.097 +/- 0.02	1.10 +/- 0.14	0.21 +/- 0.05

** irregular slot surface, * nozzle with 1/8" wide slot.

university of nevada, las vegas

Bertolini Modified Band Video

LVVWD 8/18/04, 3/8" wide nozzle slot, 127° nozzle angle, 26.5° orientation angle

university of nevada, las vegas

Advantages – Conserve water

- Narrow spray pattern & adjust outward will conserve water by about 20%
 - Covers more area per gallon of water applied
 - Services 20% larger area with same load
 - Higher uniformity of applied water
 - Fewer areas too dry or too muddy

university of nevada, las vegas fu

Advantages - Cut costs

- Narrower nozzle spray pattern & adjust outward will use less water and increase time on-site
 - Enhances site productivity (fewer trips to refill
 → equipment moves soil greater fraction of shift time)
 - For Las Vegas Valley activity May conserve 1,000-2,000 AF/year at modest investment cost

Three Things You Can Do Now to Improve Water Efficiency & Cut Costs

- Minimize nozzle spray overlap
 - Adjust nozzle fan angle
 - Adjust nozzle orientation
 - Stagger nozzle heights
- Replumb trucks for positive nozzle shut off with no air pressure (avoid leakage of truck contents when air pressure lost)
 - Bertolini and Valew valves are positive shut-off with 0 air pressure
- Adjust rewetting time to maintain dust control but not overapply water (high PEP – apply hourly in summer)

Three possible follow-up projects

- Evaluate side spray patterns from trucks
- Evaluate effectiveness of spray nozzles in suppressing airborne dust & compare "just in time" wetting with pre-wetting
 - Preliminary evidence shows fire hose nozzles, large drop sizes do not effectively suppress dust when applied "just in time" during excavation
- Evaluate impact of optimized water application on construction operations & costs – 1 less truck covering more area \rightarrow What are impacts on site costs?

Thank you to our project sponsors Southern Nevada Water Authority US Bureau of Reclamation UNLV Applied Research Initiative

Inclustry partmers Frehmer Construction / Aggregate Industries Cashman Equipment / LVVWD Envirocon

Questions?